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ABSTRACT

The demand on safety performance of launching structure and equipment system
from impulsive excitations necessitates a study which predicts the maximum
response of the system as well as the maximum stresses in the system. A method
to extract higher modes and frequencies for a class of multiple degree-of
-freedom (MDOF) Structure system is proposed. And, along with the shock
spectra derived from a linear oscillator model, a procedure to obtain upper

bound solutions for the maximum displacement and the maximum stresses in the
MDOF system is presented.

44



Section

1.1

2.1
2.1.1
212
2121
2122
2.1.23
2124
3.1

4.1

5.1

6.1

APPENDIX A Goveming Equations for SDOF System
APPENDIX B Goveming Equations for MDOF System
APPENDIX C  Sample Examples for SDOF System

APPENDIX D  Sample Examples for MDOF System

TABLE OF CONTENTS

Title

INTRODUCTION

oooooooooooooooooooooooooooooooooooooooooooo

ANALYSIS .o
Single Degree-of-Freedom System (SDOF)............
Multiple Degree-of-Freedom System(MDOF) ......
Fundamental Mode and Frequency
Higher Modes and Frequency .......cccocevvuveernnne.
Maximum Displacement of Masses
Maximum Dynamical Load

-----------------------

ooooooooooooooooooooooo

APPLICATIONS .....ocoirieiicieeceeeeceeeere

oooooooooooooooo

45



LIST OF FIGURES

Figure Title
1.1 Structure and Mathematical Model ...........coevenvinencen
5.1 Acceleration Response Sample Output .....oceeveeueneinences
5.2 Velocity Response Sample Output .......coveevencienrcnenens
53 Displacement Response Sample Output ........ccovvvviernnes
54 Acceleration Shock Spectra Sample Output ..................
55 Velocity Shock Spectra Sample Output ........ccceveencncne
5.6 Displacement Shock Spectra Sample Output .................
LIST OF TABLES

Table Title

1.1 Class of MDOF Structures ......cveienniiieieeninnnnineenens
5.1 Modes, Frequencies, and Stresses in MDOF Structures ...

496



1.1 INTRODUCTION

The prevention of structure and equipment from damage by impulsive excitions
neccessitates a study which will predict the maximum dynamic response of the
system. Two kinds of impulsive excitations are considered in this study; a blast
-pressure which acts directly on the structure or equipment, and a sudden
acceleration of bases which support structure or equipment. The investigation
can provide some useful informatuin which is relevant to the KSC launching
equipment shock design applications.

The purpose of this study is to develop a practical method which will efficiently
extract higher modes and frequencies for a class of Multiple Degree-of-Freedom
(MDOF) structures. When these higher modes and frequencies are used along
with the shock spectra of a linear oscillator subjected to the same excition, their
contributions to the maximum stresses in the real structure could well be very
significant.

2.1 ANALYSIS

At least for the purpose of estimate or in the initial design stage, a detailed
dynamical analysis of a real structure system is rarely attempted. The usual
practice is to choose an idealized mathematical model consisting of springs ( or
elastic elements ), dampers, and lumped masses which closely perform in the
same way as the real structure or equipment. Figure 1.1 shows how each real
structure or equipment is represented by an idealized mathematical model. In
this study, damping is excluded from the analysis, since only the maximum
dynamical response of the system is of primary interest.

A class of structures considered in this study are beams and frames of various
support conditions. These structures are the typical ones which support
equipment or instruments, and in certain cases , represent the equipment itself.
For the sake of simplicity and practicality, only up to three DOF structures are
included in this study. Accordingly, the method is considered efficient when it is
applied to these structures. In developing the method, with the exception of the
first mode and frequency which require a few iterations, the solution extracts
higher modes and frequencies directly from the frequency equation. The
equations governing the motion of MDOF structures are written in terms of
flexural modes, but they are equally applicable to the cases of torsional modes.
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Table 1.1 shows the class of structures which are included in this study.

2.1.1 SINGLE DEGREE-OF-FREEDOM SYSTEM (SDOF). A brief
description of the SDOF structure system is discussed first, because it can
providemuch insights to the subsequent study of the MDOF structure system. The
concept of SDOF model implies that a single coordinate is sufficient to describe

the motion of a real structure. The equation of motion of an equivalent SDOF
model is given by:

MeY(t) + KoY(t) = F,(¢) (1)

where mg , Ke and Fe are parameters of the equivalent SDOF system, the values
of which are evaluated on the basis of an assumed deflection shape of the real
structure. Detailed expressions of these parameters are given is the Appendix A.
The natural frequency, w, , of the equivalent SDOF system is simply

n
_ K 2
We = (-,;%) (2

whith w, being known, the maximum dynamic magnification factor (DMF),, s
which is defined as the ratio of the maximum dynamic deflection to the deflection
which would have resulted from the static load appplication. It should be
emphasized that the maximum dynamical response thus obtained for the

equivalent SDOF system is identical to that in the real structure. The maximum
dynamic stress is then given by:

= (3
6_:1‘1 o‘;f (DMF)qu )

where o3, is the maximum static stress and 6y the maximum dynamic stress,
both are induced by the same impulsive exciiation. An example is given in
Appendix C which illustrates the application of the SDOF concept.
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2.1.2 MULTIPLE DEGREE-OF-FREEDOM SYSTEM (MDOF). If a real
structure system has more than one possible mode of displacement, then more
than one independent coordinate is needed to describe its response. The structure
system must now be rrepresented by a MDOF model. In a MDOF system;
determining frequencies and modes become exceedingly cumbersome, because
one must deal with a complete set of equations of motion, one equation for each
degree of freedom. The complexity, however, can be reduced greatly by using
the modal analysis concept in which the response in the normal modes are
determined separately, and then superimposed to provide the total response.

2.1.2.1 Fundamental Mode and Frequency. In most practical problems, usually
a few of the lower modes are of interest. Therefore, the Rayleigh method is
convenient to use, especially in finding the fundamental frequency. By this
method, the natural frequency of the fundamental mode (first mode) can be
obtained with considerable accuracy and yet with relative ease. Although the
mode shape obtained is less accurate, that can be improved with few iterations.

In Rayleigh, the equation used to obtain the natural frequency of fundamental
mode is given by:

J
r“;, Fri ‘#r

Al oM, S
r=t{

wt =

(4)

where
¢, = displacement coordinate of rth mass
F,. = inertia force of rth mass
A = aconstant
M, = rth mass
«w = natural frequency of fundamental mode

In many practical problems, a reasonable solution of fundamental frequency is
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often obtained by assuming the static deflection curve as the mode shape, and the
dynamic deflection curve is used in subsequent iterations if desirable.

2.1.2.2 High Modes and Frequencies. After the fundamental mode and
frequency have been determined from the preceding section, the next higher

modes and frequencies of a three DOF system are then directly extracted from
the following frequency equation.

6

4 2
9, + C,9, +C,9, + C,=©° &P

where 9, relates to the frequency of higher mode and C,, C,, C, are constants
which relate to masses and flexibility coefficients of the particular structure

concerned. Detailed descriptions of variables and constants in Eq.(5) are given
in the Appendix B.

2.1.2.3 Upper Bound Maximum Displacement of Masses. The upper bound of
the maximum displacement, Yy, of rth mass due to all modes is given by:

N
Hr,maut = £ Ansf 43"'1 (DMF)M te)

nsi ax,n

where

A5y = modal static desplacement

¢

v = displacement coordinate of rth mass for nth mode
N = number of modes
(om F)mf maximum dynamic magnification factor

The 4, ,,a,computed in this manner is a rather conservative estimate of the
maximum displacement.

2.1.2.4 Maximum Dynamic Load. In order to find the maximum stress in the
structure, the maximum relative displacement between two adjacant masses must
be determined first, and which is given by the following equation.
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N
Av,max = ri;l Ansf(¢,n - 42)’-!)-1)( DMF) (7)

max,n

where

= maximum relative displacement between rth mass and

4 r, max
’ (r-1) mass for all modes

The maximum dynamic force, F,., which induces maximum dynamic stress in the
real structure, is then given by:

Fr = Kedy¢ max
Where K. is the spring constant between the rth mass and the (r-1)th mass.
Now by replacmg the static force in the real structure with one, the maximum

dynamic force, in the same structure, the computauon of maximum dynamic
stress can be proceeded in the same way as in the static case.

3.1 APPLICATION

Eight beams and frames of various support conditions are chosen in this study.
They are grouped into three catagories below and also are shown in Table 1.1

a. SDOF System
Simply Supported Beam
b. Two DOF System

Simply Supported Beam

Fixed Ends Beam

Overhanging Beam

Rigid Body on Flexible Supports

c. Three DOF System
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Simply Supported Beam
Simply Supported and Fixed End Beam
Shear-Building Frame

Frequencies and modes are obtained for all eight cases. These cases, one in each
catagory, are chosen in stresses computation. No attempts are made to include all
possible cases, the method, however, is general enough in application that a
modification on flexibility coefficients is all that required . A computer program
is written for each case except the SDOF one. In the program, the flexibility
coefficients are derived from the static deflection curve. Examples in Appendix
D show modes and frequencies for all eight cases and stresses computation for
three cases. Although programs and examples are written in flexural mode, they
are equally valid in torsional mode. To obtain results in the torsional mode,
simply substitute the mass, modulus of elasticity, and the area moment of inertia
in the flexural mode with the mass moment of inertia, modulus of rigidity, and
polar moment of inertia in the torsional mode, respectively.

4.1 RESULTS AND DISCUSSIONS

Modes and frequencies are obtained for all seven cases in the MDOF system.
And stresses are computed for three cases, one in each catagory. The results are
verified from some known sources. The method is general and yet efficient to
extract higher modes and frequencies in a MDOF system. In application,
flexibility coefficients must be obtainded first for each structure concerned. The
advantage of this proposed method is that modes and frequencies obtained in the
MDOF system and the shock spectra developed in the linear oscillator can each
serve as an independent module. Any change in one does not affect the other.
But both must act together to obtain the maximum displacements and stresses in
the MDOF structure. For illustrative purpose, some sample outputs of

dynamical responses and of shock spectra for a linear oscillator are given in
Figures 5.1 through 5.6.

5.1 SUMMARY OF RESULTS

Results of modes, frequencies, and stresses for thje MDOF systems are
summarized in Table 5.1. Verifications are made from several known sources.
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6.1 FUTURE RESEARCH

Many more cases can be included in the future study. Tables and charts in each
case can be gernrated for quick references in shock design applications. 1f

enough cases are developed, most likely, one can model a real structure analogue
to one of the cases.
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APPENDIX A
C‘(overn}nj E?ua‘t“;on of the E?ufva/eh‘f'
SDOF Sjsr"em
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APPENDIX B
Crovernfnj é?uqf-ions ef MDoOF Sjsfem
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APPENDIX B (CONTINUED)

IL. THREE DOF SYSTEM

G‘ouerninj e«iuah.ons of t+hree DOF Sjs#em
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APPENDIX 8 ( conTinuUvED)
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TABLE 5.1

TWO DOF SIMPLY SUPPORTED BEAM

INPUT DATA
load 1 load 2 span load 1 load 2 modulus area
length from right from right of moment
support support elasticity of
inertia
1b 1b inch inch inch 1b/in**2 inx=x4
25 50 35 25 10 1.E6 24
OUTPUT DATA
mode natural frequency displacement displacement
coordinate coordinate
rad/sec mass 1 mass 2
1 474.9297 1.090000 1.068182
2 1619.361 1.000000 ~0.4650053
TWO DOF FIXED ENDS BEAM
INPUT DATA
load 1 load 2 span load 1 load 2 modulus area
length from right from right of moment
support support elasticity of
inertia
1b 1b inch inch inch lb/in*»2 int*4
25 S0 35 25 10 1.E6 24
QUTPUT DATA
mode natural frequency displacement displacement
coordinate coordinate
rad/sec mass 1 mass 2
1 1121.601 1.000000 1.202247
2. 2336.245 1.000000 -0.3883002
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TABLE 5.1 (Continue)
TWO DOF OVERHANGING BEAM
INPUT DATA
load 1 load 2 span load 1 load 1 load 2
length from left from right from right
support support support
1b 1b inch inch inch inch
30 7.5 24 12 12 12

mudulus of elasticity = 1,.*%E6 lb/in*+2
Area moment of inertia e 24 inw**4

OUTPUT DATA

mode natural frequency displacement displacement
coordinate coordinate
rad/sec mass 1 mass 2
1 100.3552 1.000000 -2.774851
2 211.4977 1.000000 1.441519

TWO DOF RIGID BODY BEAM
ON FLEXIBLE SUPPORTS

INPUT DATA
load 1 radius span c.g. c.g. spring spring
of length from left from right constant constant
gyration support support 1 2
1b inch inch inch inch 1b/in 1b/in
5.6 3.9 10 6.93 3.07 15 5

OUTPUT DATA

mode natural frequency displacement displacement
coordinate coordinate
rad/sec ‘ mass 1 mass 2
1 23.30480 1.000000 -4.971451

2. ' 65.67800 1.200000 0.2011484
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TABLE 5.1 (C@NTINUE)

THREE DOF SHEAR BUILDING FRAME

INPUT DATA
load 1 load 2 1load 3 span load 1 load 2 load 3
length from right from right from right
support support sopport
lb 1b 1b inch inch inch inch
650 19300 38600 466 346 173 ]

modulus of elasticity = 1,E6 lb/in#**2
area moment of inertia = 4329 inw#{§

OUTPUT DATA

mode natural displacement displacement displacement
frequency coordinate coordinate coordinate
rad/sec mass 1 nass 2 mass 3
1 6.007885 1.000000 3.906237 6.108354
2 20.01055 1.000000 2,996532 -0.9990512
3 40,79921 1.000000 -0.1600301 1.0241550E-02
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THREE DOF SIMPLY SUPPORTED
AND FIXED END BEAM

INPUT DATA
load 1 load 2 1load 3 span load 1 load 2 load 3
length from right from right from right
support support sopport
1b 1b 1b inch inch inch inch
1.5 1.0 2.0 480 390 294 168

modulus of elasticity = )J.#*E6 lb/in**2
area moment of inertia = 90 in#**4

OUTPUT DATA

mode natural displacement displacement displacement
frequency coordinate coordinate coordinate
1 114.45648 1.000000 1.504153 1.073848
2 313.5506 1.000000 0.4624190 ~1.234211
3 796.5601 1.000000 -1.574680 0.4058067

THREE DOF SIMPLY SUPPORTED BEAM

INPUT DATA
load 1 1load 2 1load 3 span load 1 load 2 load 3
length from right from right from right
support support sopport
1b 1b 1b inch inch inch inch
3 2 3 480 360 240 120

modulus of elasticity = 1.##E6 lb/inw*2
area moment of inertia « 30 inw*4

OUTPUT DATA

mode natural displacement displacement displacement
frequency coordinate coordinate coordinate
rad/sec massll mass 2 mass 3
1 32.31675 1.000000 1.400000 1.073848
2 114.0660 1.000000 3.2434639E-02 1.000000
3 275.5626 1.000000 -2.138684 1,000000
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